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Abstract. The paper mainly solved the problem of the design of command and control
structure. First, the key elements in command and control structure are defined and we
introduced the concept of work load of decision makers to describe the problem
mathematically. Next, a mathematic model aimed at minimizing the root mean square of
decision makers’ work load is developed. Finally, we combine the quantum genetic
algorithm with self-adaption strategy and get the self-adaption quantum genetic algorithm.
Major characteristic of this algorithm is adjusting the quantum rotation gate, generating the
crossover probability and the mutation probability in a self-adaption way. Experimental
results show that the self-adaption quantum genetic algorithm has a feature of evolving fast
and searching precise, and it can cluster the platforms well to accomplish the design of
command and control structure.

1 Introduction

The design of command and control structure is the key issues in army organization. A
reasonable command and control structure can improve the command efficiency of the whole army
command [1][2][3], and balance the workload of each decision makers [4][5]. In the design of the
command and control structure, we divide all platforms into several non-overlapping groups. Each
group is distributed a decision maker [6]. So the key problem of command and control structure
design is clustering platforms.

Platform clustering is the second part of content of the three-phase design of adaptive
organization [7][8][9]. Levchuk sets up the mathematical model with the target of minimize the
maximum workload of decision makers [8]. Zhang set the task processing time as the measurement
of decision-makers workload and use hierarchical clustering method to solve the problem in [10].
Hierarchical clustering method use greedy strategy in each step which can only get a local optimal
solution. The above models are single objective model and Sun put forward multi-objective
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optimization model in [11] which can get several forefront solutions.

In this paper, we come up with the concept of task complexity to measure the workload of
decision-makers and set up a mathematical model minimizing the RMS (Root Mean Square) of
decision-makers workload as the objective function. Finally, we put forward a SAQGA
(Self-Adaption Quantum Genetic Algorithm, SAQGA) to solve the model.

2 Definition

2.1 Elements in the design of command and control

(1) A task is a goal that needs to be accomplished during combat. Typically, completing a task
requires the use of one or more platforms. Task setis7 ={7}(i =1,...,1).

(2) Platform is the basic unit for executing tasks. Platform setis P={P,}(j =1,...,.J).

(3) Decision-maker(DM) is the essential element of command and control in military
organization, which has the ability of information processing and commanding. DM set is
DM ={DM, }(m=1,..,D).

2.2 Variable

(1) Assignment variable between task and platform ;(i=1,,I;j=1,-J), w,=1 means
assign platform j to task i; @, =0 means there is no relationship between platform and task.

(2) Control variable between DM and platform x, (m=1,---,D;j=1,--J), x, =1 means

DM, control platform P, ; x,, =0 means there is no relationship between platform and DM.

(3) Execution variables for DM u,,(m=1,---,D;i=1,---I), u, =1means DM, execute task T};

u,, =0 means there is no relationship between task and DM.

3 Problem model

Figure 1 simply describes the relationship among DMs, tasks, and platforms, and there is
collaborative relationships among DMs.

Ve

Fig.1 Relationship among DMs, tasks and platforms
3.1 Definition of working load of decision-makers

In the operational command, the decision-makers command platform to perform a number of
tasks. Different tasks have different complexity.

(1) In the case of the same number of platforms, the complexity of the charge of the collaborative
task is greater than the complexity of the task that does not require collaboration.
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(2) In the case of the same collaboration relationship, the complexity of the number of tasks
required for the platform is larger than the number of platforms, and the complexity of the task is
less than the number.

Kk, 1s the complexity of decision-maker m executing task i:

mi
J D J
Koni = mej'wij + Z anj'a’ij (D)
= nel, j=1

n#m

The workload of decision-maker m executing task 7 is:

load(m,i) =k, (2)
The workload of decision-maker m is sum of all tasks workload:

i=1 J D J
CW(m)=Z(w/me/'% 2D X0, (3)
-1\ j=1 n=l, j=1

3.2 Optimization objective

The essence of command and control structure design is to generate platform clustering
scheme. All platforms are divided into a number of platforms, each of which is controlled by a
decision entity. According to the 2.1 decision of the decision-makers workload, we measure the
objective function from two aspects.

(1) Average workload of decision-makers:

1 D
yzBZCW(m) (4)

(2) Variance workload of decision-makers:

o Z%Z[CW(W!)—N]z (5)

m=1
This paper uses the mean square root entity of decision load measure clustering scheme is
good or bad. Literature [9] shows in a team, minimizing the mean and variance of the
decision-makers workload is equal to minimize the RMS. RMS is equal to the expectation and
standard deviation of the square value.

RMS = /%iCWZ(m)=«/0'2+y2 (6)

To sum up, the optimization objectives of the whole model are as follows:
min RMS

D J (7)
s.t mejzl meJZI x,, €{0,1}

4 Problem solving

4.1 Quantum genetic algorithm

Quantum genetic algorithm [13] and the traditional genetic algorithm is mainly reflected in two
points. One is using quantum bit encoding to represent chromosomes, genes expressed in the form
of probability amplitude, the other is using quantum rotating gate to update population instead of
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selecting, crossover and mutation operation.
M bit quantum bit code can be expressed as:

{al az “ee am} ( 8 )
ﬂl ﬁZ e ﬂm
(a., ) is the i* qubit of the chromosome, and it is a pair of plural. It meets |« * +|B=1,and ,

|0>, |1>represent two different bit states. Without observation, the quantum is in the basic state,

after observing, the quantum will collapse to 0 or 1 with probability 0.5 or 0.8. The qubit is updated

as follows
a, a,

A b,

(a;,8) represents the qubits updated, and A8, is the quantum rotation angle.

cosAfd, —sinAb,
sinAf, cosAb,

9

4.2 Self-adaptive strategy
The calculation formulas of the quantum rotation angle, crossover probability and mutation

probability in the adaptive strategy are as follows:
£ =0, +LmL g g

f f max min
max min

) (10D

ki (fowax = S) b (fow =)
L L5 > fzfavg -, 5 > f Zfavg

PC: fmax_f;lvg (11) Pm: fmax_‘f;vg (12)
2 o S < S ky o S < S

Joax 18 the maximum fitness in the population. f,  is the average fitness of population. f is the

greater fitness of the two individuals to be crossed. " is the adaptive degree of individual variation.
f.1s the current individual fitness. €__ is the maximum value for interval A@. 6 is the

max

minimum value for interval A@ . k, k, k, k, 1is constant.
4.3 SAQGA

Algorithm steps are as follows:

Step 1: Initial quantum bit code, «,,B (i=1,---,m)=1/ 2, ensure the quantum bit collapse to the
same probability of 0 or 1 at the beginning;

Step 2: Observed quantum bit code and got the binary code, calculate the fitness of each
individual.

Step 3: Select optimal individuals as the next generation of evolutionary goals. Adjust the
quantum rotation angle adaptively to update population according to the formula (10). Do quantum
crossover operation.

Step 4: Generating crossover and mutation probability adaptively according to the formula
(11)(12). If the iteration stops, output the result; otherwise return to step 2.

5 Experiment simulation

5.1 Experimental case

The experimental data used in this paper is from the MOC-1 experiment carried out by the US
naval Graduate School (NPS) supported by the U.S. Department of defense [5]. The matching
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relationship between task and platform is shown in Table 1, Simulation runs on Intel (R) Core CPU
2.5GHz 15-2450M computer.

Tab. 1 Assignment relationship between tasks and platforms

Task Platform Execution time Task Platform Execution time
I P 30 T; Ps P12 24
T, P, P4 Py 30 Ts Pis 24
Ts Py P13 Py 30 To P; Py, 30
T4 Pg Pig 30 Tho Pis P1s 18
Ts Ps P14 10 Ty P, Py 30
Ts Ps P; 4

5.2 Analysis

Experiment 1: In this experiment, the number of decision-makers is 4. The maximum workload
is 94.7, and the minimum workload is 81.9. The average working load is 86.85 and the RMS value
is 86.98. Hierarchical clustering algorithm is a common method to solve the clustering problem.
The clustering scheme used in this case is shown in Table 3. The maximum load is 115.90, the
minimum working load is 84.85, the average working load is, and the RMS is about 92.32.
Compared with the hierarchical clustering algorithm, the average workload using SAQGA
algorithm is lower than that of the hierarchical clustering algorithm 9.78%, and the RMS increased
by 10.54%. It is also noted that the workload of DM2 has fallen from 94.7 to 86.2, which shows that
the SAQGA algorithm can effectively balance the load of each decision entity, avoid the load
variance is too large.

Tab. 2 SAQGA algorithm

DM SAQGA Average
Platform Workload RMS
DM; P3 Pg P]o Py 84.8528
Ps P7 P14 PysPig Pisg
DM, Py 94.7107 26.98
DM; P, P, P4 Py; 81.9615
DM4 P6 P9 Plz P13 P19 85.9026

Tab. 3 Hierarchical clustering algorithm based on minimum RMS

Hierarchical clustering algorithm Average

DM based on minimum RMS RMS
Platform Workload

DM, P3 Pg Py P13 84.8528

DM, Ps P; P14 Py5s Py 86.2254 96.15

DM; P, P4 P P17 Pyg 94.3879

DM, Py Pg Py P, P53 Pyo 115.9026

Experiment 2: In order to further verify the superiority of SAQGA algorithm, we compare the
quantum genetic algorithm (Quantum Genetic Algorithm, QGA) with SAQGA algorithm. Two
search algorithms were iterated for 200 times, population size of 200, the evolution curve shown in
Figure 2. QGA algorithm converges in the 130 generation, RMS value is 96, and SAQGA algorithm
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converges in the 40 generation, RMS value of 87. In contrast, the SAQGA algorithm has the
characteristics of fast convergence and good search results.
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Fig. 2 Iterative process Fig. 3 Monte Carlo simulation

Experiment 3: In order to analyze the statistical characteristics of SAQGA algorithm, the
SAQGA algorithm is compared with QGA algorithm, genetic algorithm (GA) and adaptive genetic
algorithm (SAGA). We have achieved across 50 Monte-Carlo simulation experiments for four kinds
of algorithms, the experimental results are shown in Figure 3. The horizontal line represents the
median statistics in boxplots, highly representative of distribution box, outside the box of discrete
points represent outliers. The experimental results show that the SAQGA algorithm has the best
convergence, the least number of outliers, and the median RMS value is the lowest.

6 Summary

In this paper, a mathematical model is established to minimize the RMS, and the SAQGA
algorithm is used to solve the model. The experimental results show that the SAQGA algorithm can
effectively solve the problem of clustering platform.
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